The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching – quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes:

- to be a compact and modern up-to-date source of reference on a well-defined topic
- to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas
- to be a source of advanced teaching material for specialized seminars, courses and schools

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg / Germany
christian.caron@springer.com
Aspects of Physical Biology

Biological Water, Protein Solutions, Transport and Replication
Preface

The application to Biology of the methodologies developed in Physics is attracting an increasing interest in the scientific community. The physics approach to the study of biological problems has created the new interdisciplinary field of Physical Biology. The aim of this field is to reach a better understanding of the biological mechanisms at the molecular and cellular levels. Statistical Mechanics plays an important role in the development of this new field.

For this reason, we selected as topic and title for the XX Sitges Conference on Statistical Physics “Physical Biology: from Molecular Interactions to Cellular Behavior.” As is by now tradition for the Sitges conferences, a number of lectures were subsequently selected, expanded and an updated for publication in the series “Lecture Notes in Physics” to provide both an introduction and an overview to a number of subjects of broader interest and to favor the interchange and cross-fertilization of ideas between biologists and physicists. This volume focuses on three main subtopics: biological water, protein solutions, and transport and replication, presenting for each of them the ongoing debates on the recent results. The role of water in biological processes, the mechanisms of protein folding, the phases and cooperative effects in biological solutions, and the thermodynamic description of replication, transport and neural activity are all subjects that in this volume are revised, based on new experiments and new theoretical interpretations.

The conference itself was held in Sitges (Barcelona, Spain) on 5–9 June, 2006, and was sponsored by several institutions that provided financial support: European Physical Society, Ministerio de Educación y Ciencia of the Spanish Government, Departament d’Universitats, Recerca i Societat de la Informació of the Generalitat de Catalunya, Universitat de Barcelona and the Centre Especial de Recerca (CER) Física de Sistemes Complexos. As in former editions of the conference, the city of Sitges allowed us to use the beautiful Palau Maricel as the lecture hall. We are also very grateful to M. Naspreda, whose contribution as member of the Local Organizing Committee was essential, and to M.-C. Miguel, D. Reguera and J. M. Vilar for their helpful suggestions. Last but not least, we would like to thank all the speakers and participants of the conference, for the high scientific quality of their contributions and for the pleasant atmosphere that they created, and in particular those
colleagues who agreed to the effort of providing tutorial accounts of their lectures that make up this exciting volume.

Barcelona,
December 2007

Giancarlo Franzese
Miguel Rubi
Contents

Part I Biological Water

Dynamics of Water at Low Temperatures and Implications for Biomolecules ... 3
P. Kumar, G. Franzese, S.V. Buldyrev and H.E. Stanley

1 Introduction .. 4
2 Bulk Water ... 9
3 Hydrated Biomolecules ... 11
4 Other Evidences of Changes at the Widom Line ... 13
5 Relation Between Thermodynamics and Dynamics ... 14
6 Conclusions .. 19
References ... 20

Anomalous Behaviour of Supercooled Water and Its Implication for Protein Dynamics 23
J. Swenson, H. Jansson and R. Bergman

1 Introduction .. 23
2 Apparent Fragile to Strong Transitions of Confined Supercooled Water 28
3 Relation Between Solvent and Protein Dynamics ... 32
4 Conclusions .. 38
References ... 39

Interactions of Polarizable Media in Water and the Hydrophobic Interaction ... 43
F. Bresme and A. Wynveen

1 Introduction .. 43
2 The Origin of Strong Attraction Between Hydrophobic Surfaces ... 46
3 Computer Simulation Treatment of Polarizable Hydrophobic Solutes .. 51
4 The Influence of Solute Polarizability on the Hydrophobic Interaction 56
Part II Protein and Biological Solutions

Metastable Mesoscopic Phases in Concentrated Protein Solutions 65
P.G. Vekilov, W. Pan, O. Gliko, P. Katsonis and O. Galkin
1 Macroscopic and Mesoscopic Phases 66
2 Methods of Detection and Monitoring of Metastable Clusters 69
3 Intermolecular Interactions in Solutions of Lumazine Synthase and Hemoglobin .. 74
4 Lack of Liquid–Liquid Phase Separation in Solutions of Lumazine Synthase and Hemoglobin .. 75
5 Dense Liquid Clusters in Solutions of Lumazine Synthase and Hemoglobin ... 76
6 Monte Carlo Simulations of Formation and Decay of Clusters 87
7 Summary and Perspectives for Future Work 90
References ... 91

Application of Discrete Molecular Dynamics to Protein Folding and Aggregation ... 97
S.V. Buldyrev
1 Introduction ... 97
2 Discrete Molecular Dynamics ... 98
3 Protein Folding ... 102
4 The One-Bead Go Model ... 102
5 Transition States of Realistic Proteins 107
6 The Two-Bead Go Model ... 110
7 The Two-Bead Model with Hydrogen Bonds: Studies of Protein Aggregation .. 112
8 The Four-Bead Model: Studies of the α-Helix-to-β-Hairpin Transition .. 114
9 Simulations of Amino Acid–Specific Interactions 120
References ... 128

Cooperative Effects in Biological Suspensions: From Filaments to Propellers ... 133
I. Pagonabarraga and I. Llopis
1 Introduction ... 133
2 Semiflexible Filaments .. 135
3 Modeling Inextensible Semiflexible Filaments 135
4 Semiflexible Filaments Under External Forcing 138
5 Self-Propelling Particles ... 141
6 Short-Time Dynamics .. 143
7 Long-Time Dynamics .. 145
8 Conclusions .. 150
References ... 151
Contents

Part III Transport and Replication

A Thermodynamic Description of Active Transport 155
S. Kjelstrup, J.M. Rubi and D. Bedeaux

1. Introduction .. 155
2. Energy Conversion in the Ca-ATPase 156
3. Towards a Thermodynamic Transport Theory 160
4. Mesoscopic Non-equilibrium Thermodynamics 163
5. Experimental Determination of Transport Coefficients 170
6. Conclusion ... 173
References ... 173

Energy Interconversion in Transport ATPases 175
L. de Meis

1. Introduction .. 175
2. Concepts in Energy Transduction 177
3. Phosphate Compounds of High and Low Energy 177
4. Experimental Measurements .. 179
5. Energy Transduction by Enzymes: Conversion of Phosphate Bonds from High into Low Energy at the Catalytic Site of Enzymes .. 181
6. Energy Transduction and Heat Production in Transport ATPases . 184
References ... 185

A Novel Mechanism for Activator-Controlled Initiation of DNA Replication that Resolves the Auto-regulation Sequestration Paradox 189
K. Nilsson and M. Ehrenberg

1. Introduction .. 190
2. Analysis .. 198
3. Conclusions ... 210
References ... 212

Activity-Dependent Model for Neuronal Avalanches 215
L. de Arcangelis

1. Introduction .. 215
2. Neurons, Synapses, and Hebbian Plasticity 217
3. Neural Avalanches and Networks: Experimental Results 219
4. The Model .. 220
5. Pruning and Neuronal Avalanches 222
6. Power Spectra .. 225
7. Conclusions ... 228
References ... 229

Index ... 231
Index

1/f noise, 227
\(\Phi \) values, 110
\(\beta \)-amyloid, 114, 120, 121
\(\beta \)-relaxation, 24

action potential, 217, 218, 220, 221
activation energy, 20
activation energy, 7, 8, 10, 17, 18
active transport, 156, 167
available energy, 157
work done, 157
aggregate, 146–150
alignment, 145, 150
Alzheimer disease, 114, 121, 122
Alzheimer’s disease, 97, 113, 121
amyloidogenesis, 119
Arrhenius, 24
Arrhenius behavior, 7–10, 12, 13, 17, 19
atomic force microscopy, 48
available work, 159

ballistic, 145, 146, 148
barnase, 104, 111, 112
bead-on-a-string model, 102
Berendsen barostat, 128
Berendsen method, 126
binary tree, 124
biofilament, 135, 138, 151
biological channels, 47
biological relevance of water, 3
biological water, 26
bulk water, 6
bulk water, 5
bulk water, 6, 8, 9, 14, 17, 19
Ca-ATPase, 156
cavitation, 46
chemical driving force, 166
chemical reactions, 100
cold denaturation, 101
computer simulations, 51
confined geometry, 26
confined water, 6–9, 17–19, 29
contact angle, 56
cooperativity, 133, 135, 141, 143, 145, 150, 151
coupling at the surface, 162
Curie principle, 162
dewetting, 110
dielectric boundaries, 52
dielectric spectroscopy, 28
diffusion, 139, 145, 146, 148
discontinuous molecular dynamics, 98
driving force
 chemical, 166, 170
 osmotic, 166, 170
 thermal, 166, 170
drying, 46
dynamic crossover, 8, 19
dynamic crossover, 3, 4, 6–14, 16–18, 20
EEG, 216, 224–226, 228, 229
electrostatic potential, 52
energy landscape, 27
entropy production, 159
generalised friction, 159
in surface, 164
of a chemical reaction, 159
of active transport, 164
of the ATP hydrolysis, 159
ohmic heat, 159
event-driven molecular dynamics, 98
excess variables, 162
excitatory, 219, 222, 223, 225, 227

fibrils, 98, 112, 114, 119, 120
flocking, 147, 148, 150, 151
folding, 108
folding nucleus, 104, 108
folding pathway, 111, 112
folding pathways, 107, 109, 111
fragile, 25
fragile-to-strong transition, 26, 28
fragility, 25
glass, 100, 101, 103, 119
glass formers, 25
 Go model, 103, 107, 111

 heat capacity, 44
 heat production
 measurement, 165
 Hebb, 219, 229
 heteropolymer, 100, 102, 103
 heteropolymers, 102
 high-density liquid, 20
 Hill diagrams, 161
 homopolymer, 103
 Huntington disease, 114
 Huntington’s disease, 113, 121
 hydration water, 13
 hydration shell, 27
 hydration water, 3, 6, 11–13, 19, 20
 hydrodynamic interactions (HI), 133, 135–141, 143–151
 hydrogen bond, 6, 15, 16, 20, 45
 hydrophobic interaction, 43
 hydrophobic surface, 46

 image charges, 52
 inextensible filament, 133, 135, 136, 151
 inhibitory, 219, 225, 227, 228
 interfacial water, 29

 Jagla model, 99
 Jagla solvent, 110

 lattice-boltzmann (LB), 141
 leakage, 227
 level flow, 167
 Leventhal paradox, 102, 104
 liquid–liquid critical point, 6
 liquid–liquid phase transitions, 99
 liquid-liquid critical point, 3, 5, 8–10, 16, 20
 local equilibrium, 163
 lost work, 159
 low density states, 57

 low-density liquid, 20
 Mad Cow disease, 97
 maximal valence model, 100
 maximum im response functions, 7
 maximum in response functions, 3, 10
 mean square displacement, 145, 146
 mobility, 138, 139
 molecular pump, 156
 slip, 156, 158, 168
 stoichiometric, 158
 molten globule, 105, 109, 119
 motility, 133, 142, 143
 myoglobin, 33
 nanobubbles, 46
 native state, 97, 102
 natural selection, 102
 nematic, 149, 150
 network, 215–217, 219–221, 223, 224, 226–228
 neuron, 215, 217–222, 229
 neuronal avalanches, 216, 219, 222
 neurotransmitter, 216, 219
 neutron reflectivity, 48
 No man’s land, 26
 non-Arrhenius behavior, 7–10, 13, 16–19
 non-equilibrium thermodynamics
 classical, 156
 mesoscopic, 156
 non-linear flux-force relations, 156, 161
 Nuclear magnetic resonance, 44

 Onsager relations
 mesoscopic level, 166
 organism, 133, 134, 142, 146, 148, 151
 osmotic driving force, 166

 P-fold analysis, 108, 110, 112
 pair distribution function, 148
 persistence length, 135
 physical gels, 100
 Picasso, 102
 plasticity, 216, 217, 219–223, 228
 polarizability, 50
 polarizable solutes, 51
 polyalanine, 114, 117, 119, 120
 polyglutamine, 114, 119, 121
 polymer collapse, 99
 potential energy landscape, 102
 power spectra, 216, 225, 226
 PRIME model, 101, 115
 prion diseases, 97, 113
 propulsion, 134, 142, 143, 149
propylene glycol, 28
protein glass transition, 20
protein aggregation, 97
protein dynamics, 6
Protein folding, 97
protein glass transition, 44
protein glass transition, 6
protein glass transition, 3, 4, 13
protein water interactions, 49
pruning, 221, 223, 224, 228

QENS, 28
quasielastic neutron scattering, 28
Ramachandran angles, 116, 117
reaction kinetics, 161
 the degree of reaction, 161
 refractory period, 218, 220, 221
Reynolds number, 134, 135, 146, 149
sedimentation, 137–141, 143
self-propelling, 133, 135, 141–144, 146, 147, 149
semiflexible filament, 133, 135, 136, 138, 140, 151
SH3 domain, 104, 107, 109–111, 113
singularity-free scenario, 5, 6, 16
small world, 224, 226, 228
SOC, 216, 220, 228
specific heat, 9
specific heat, 3, 5, 7, 10, 12
spontaneous activity, 220, 221, 225
staphylococcal protein A, 104
static head, 167
stochastic process, 161, 226
stoichiometric pump, 167
stress, 133, 135, 139–141, 146–148
Sum frequency spectroscopy, 44
supercooled water, 4, 6, 8, 26, 31
surface
 autonomous system, 162
 surface force apparatus, 48
suspension, 133, 142–151
symmetry break, 162
synapses, 216–218, 220–223, 225, 227–229
thermal driving force, 166
thermal fluctuations, 58
thermodynamic anomalies, 101
thermogenesis, 156, 169
thermogenesis coefficients, 172
threshold firing, 220
transition state ensemble, 108
transition state ensembles, 107
trp-cage miniprotein, 107, 120, 121
Velasquez, 102
velocity verlet, 137
virial theorem, 127
viscosity, 24
Vogel-Fulcher-Tammann, 24
water, 44
water anomalies, 3–6, 8, 9, 20
water dynamics, 26
Widom line, 3, 4, 6–9, 12–14, 16, 20
work, 159
x-rays, 48